“…constitutive equations(11) for σ,(12) for P and(17) for∂ ψ ∂β , we obtain σ U,X − D φ,X − p α,X 1 ζ 0 = = ρ U,X Σ 1 U ,X + ) Ṁ3 (s)ds − ρ φ,X (Σ 2 − − ρ −1 ε 0 )φ ,X + du + κ 0 ( α,X ) 2 . (122)By equating the two expressions (120) and (122) and by considering the relation (121), we obtainρ U,X Σ 1 U ,X + ) Ṁ3 (s)ds − ρ φ,X (Σ 2 − − ρ −1 ε 0 )φ ,X + du ρ α.…”