We present a variational formulation for the evolution of surface clusters in R 3 by mean curvature flow, surface diffusion and their anisotropic variants. We introduce the triple junction line conditions that are induced by the considered gradient flows, and present weak formulations of these flows. In addition, we consider the case where a subset of the boundaries of these clusters are constrained to lie on an external boundary. These formulations lead to unconditionally stable, fully discrete, parametric finite element approximations. The resulting schemes have very good properties with respect to the distribution of mesh points and, if applicable, volume conservation. This is demonstrated by several numerical experiments, including isotropic double, triple and quadruple bubbles, as well as clusters evolving under anisotropic mean curvature flow and anisotropic surface diffusion, including computations for regularized crystalline surface energy densities.