2020
DOI: 10.1515/forum-2020-0203
|View full text |Cite
|
Sign up to set email alerts
|

On three-variable expanders over finite valuation rings

Abstract: Let {\mathcal{R}} be a finite valuation ring of order {q^{r}}. In this paper, we prove that for any quadratic polynomial {f(x,y,z)\in\mathcal{R}[x,y,z]} that is of the form {axy+R(x)+S(y)+T(z)} for some one-variable polynomials {R,S,T}, we have|f(A,B,C)|\gg\min\biggl{\{}q^{r},\frac{|A||B||C|}{q^{2r-1}}\bigg{\}}for any {A,B,C\subset\mathcal{R}}. We also study the sum-product type problems over finite valuation ring {\mathcal{R}}. More precisely, we show that for any {A\subset\mathcal{R}} with {|A|\gg q^{r-\frac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?