An algebraic graph is defined in terms of graph theory as a graph with related algebraic structures or characteristics. If the vertex set of a graph G is a group, a ring, or a field, then G is called an algebraic structure graph. This work uses an algebraic structure graph based on the modular ring Zn, known as a hyper-chordal ring network. The lower and upper bounds of the local fractional metric dimension are computed for certain families of hyper-chordal ring networks. Utilizing the cardinalities of local fractional resolving sets, local fractional resolving (LFR)M-polynomials are computed for hyper-chordal ring networks. Further, new topological indices based on (LFR)M-polynomials are established for the proposed networks. The local fraction entropies are developed by modifying the first three kinds of Zagreb entropies, which are calculated for the chosen hyper-chordal ring networks. Furthermore, numerical and graphical comparisons are discussed to observe the order between newly computed topological indices.