“…Especially, we give all the Sasakian statistical structures on the usual Sasakian manifold R 3 in terms of three independent functions(see Proposition 5.1). Moreover, we find out all the holomorphic statistical structures of constant holomorphic curvature 0 on a Kähler manifold due to A. N. Siddiqui and M. H. Shahid [17] It can be easily proved that (∇ X g)(Y, Z) = (∇ Y g)(X, Z) and K(e i , e j ) = K(e j , e i ), g(K(e i , e j ), e k ) = g(K(e i , e k ), e j ), K(e i , φe j ) + φK(e i , e j ) = 0, or equivalently, the coefficients {K l ij } satisfy:…”