2019
DOI: 10.1155/2019/9496180
|View full text |Cite
|
Sign up to set email alerts
|

On Travelling Wave Modes of Axially Moving String and Beam

Abstract: The traditional vibrational standing-wave modes of beams and strings show static overall contour with finite number of fixed nodes. The travelling wave modes are investigated in this study of axially moving string and beam although the solutions have been obtained in the literature. The travelling wave modes show time-varying contour instead of static contour. In the model of an axially moving string, only backward travelling wave modes are found and verified by experiments. Although there are n − 1 fixed node… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 18 publications
(3 citation statements)
references
References 39 publications
0
1
0
2
Order By: Relevance
“…For the first time, Shen et al 46 introduced nonlocal strain gradient theory into the axially moving functionally graded nanoplates to study the dynamic stability, but lacked the systematic analysis on free vibration. Considering that the axially moving structure is often subjected to initial axial tensions in practical engineering, 47 this paper studies the transverse free vibration of axially moving functionally graded nanoplates subjected to the initial tensile force.…”
Section: Introductionmentioning
confidence: 99%
“…For the first time, Shen et al 46 introduced nonlocal strain gradient theory into the axially moving functionally graded nanoplates to study the dynamic stability, but lacked the systematic analysis on free vibration. Considering that the axially moving structure is often subjected to initial axial tensions in practical engineering, 47 this paper studies the transverse free vibration of axially moving functionally graded nanoplates subjected to the initial tensile force.…”
Section: Introductionmentioning
confidence: 99%
“…В работе [1] для задачи (1)-( 3) строятся пробные решения в виде тригонометрических многочленов, состоящие из конечного числа слагаемых, и устанавливаются механические свойства колебаний, которые возникают в движущемся полотне. Работа [2] содержит прием из вариационного исчисления для вывода уравнения колебаний движущейся струны.…”
unclassified
“…. , λ N , то для каждого значения имеем функцию, которая определяется по формуле (22) и является решением уравнения (1). Тогда линейная комбинация этих решений так же является решением и определяется следующей формулой:…”
unclassified