2020
DOI: 10.48550/arxiv.2004.03102
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On trigonometric skew-products over irrational circle-rotations

Abstract: We describe some asymptotic properties of trigonometric skew-product maps over irrational rotations of the circle. The limits are controlled using renormalization. The maps considered here arise in connection with the self-dual Hofstadter Hamiltonian at energy zero. They are analogous to the almost Mathieu maps, but the factors commute. This allows us to construct periodic orbits under renormalization, for every quadratic irrational, and to prove that the map-pairs arising from the Hofstadter model are attract… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?