For commitments on secrets, statistical hiding is a must when we are dealing with a long‐term secret or when the secret domain is small enough for a brute‐force attack by a powerful adversary. Unfortunately, all the Chinese Remainder Theorem‐based verifiable secret sharing schemes in the literature are either insecure or suffer from the vulnerability of computationally hiding commitments. To the best of our knowledge, there exist five such studies where two of them were already proven to be insecure. In this work, we first show that two of the remaining schemes are also insecure, that is, the schemes reveal information on the secret even when the adversary is passive. In addition, the remaining one is only secure against a computationally bounded adversary which can be a problem for secret sharing schemes requiring long‐term secret obscurity or using small secret domain. We propose a modification for the latter scheme and prove that the modified scheme is a secure verifiable secret sharing scheme against an unbounded adversary. Lastly, as an application, we show how to use the new scheme for joint random secret sharing and analyze the practicality and efficiency of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd.