Due to the low utilization and scarcity of frequency spectrum in current spectrum allocation methodology, cognitive radio networks (CRNs) have been proposed as a promising method to solve the problem, of which spectrum sensing is an important technology to utilize the precious spectrum resources. In order to protect the primary user from being interfered, most of the related works focus only on the restriction of the missed detection probability, which may causes over-protection of the primary user. Thus the interference probability is defined and the interference-aware sensing model is introduced in this paper. The interference-aware sensing model takes the spatial conditions into consideration, and can further improve the network performance with good spectrum reuse opportunity. Meanwhile, as so many fading factors affect the spectrum channel, errors are inevitably exist in the reporting channel in cooperative sensing, which is improper to be ignored. Motivated by the above, in this paper, we study the throughput tradeoff for interference-aware cognitive radio networks over imperfect reporting channel. For the cooperative spectrum sensing, the K-out-of-N fusion rule is used. By jointly optimizing the sensing time and the parameter K value, the maximum throughput can be achieved. Theoretical analysis is given to prove the feasibility of the optimization and computer simulations also shows that the maximum throughput can be achieved when the sensing time and the parameter of K value are both optimized.