In this paper, the bending behavior of functionally graded single-layered, symmetric and non-symmetric sandwich beams is investigated according to a new higher order shear deformation theory. Based on this theory, a novel parabolic shear deformation function is developed and applied to investigate the bending response of sandwich beams with homogeneous hardcore and softcore. The present theory provides an accurate parabolic distribution of transverse shear stress across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the functionally graded sandwich beam without using any shear correction factors. The governing equations derived herein are solved by employing the finite element method using a two-node beam element, developed for this purpose. The material properties of functionally graded sandwich beams are graded through the thickness according to the power-law distribution. The predictive capability of the proposed finite element model is demonstrated through illustrative examples. Four types of beam support, i.e. simply-simply, clamped-free, clamped–clamped, and clamped-simply, are used to study how the beam deflection and both axial and transverse shear stresses are affected by the variation of volume fraction index and beam length-to-height ratio. Results of the numerical analysis have been reported and compared with those available in the open literature to evaluate the accuracy and robustness of the proposed finite element model. The comparisons with other higher order shear deformation theories verify that the proposed beam element is accurate, presents fast rate of convergence to the reference results and it is also valid for both thin and thick functionally graded sandwich beams. Further, some new results are reported in the current study, which will serve as a benchmark for future research.