“…(s+2t)δ−k . Making the change of variable yN = x k in I (β) and J (β), and then substituting γ = βN in I(m), we see thatI(m) = (δ/k) s+2t N (s+2t)δ/k−1 lim λ→∞ R φ(u) λ −λ e(γ (u − mN −1 )) dγ du, where φ(u) = · · · y 1 ,...,y 2t ∈[θ,1] y 2t+1 ,...,y 2t+s−1 ∈[0,1] , . .…”