2024
DOI: 10.1007/s00010-024-01041-9
|View full text |Cite
|
Sign up to set email alerts
|

On when the union of two algebraic sets is algebraic

Erhard Aichinger,
Mike Behrisch,
Bernardo Rossi

Abstract: In universal algebraic geometry, an algebra is called an equational domain if the union of two algebraic sets is algebraic. We characterize equational domains, with respect to polynomial equations, inside congruence permutable varieties, and with respect to term equations, among all algebras of size two and all algebras of size three with a cyclic automorphism. Furthermore, for each size at least three, we prove that, modulo term equivalence, there is a continuum of equational domains of that size.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?