Abstract. In this paper, we introduce multi-variable zeta-functions of roots, and prove the analytic continuation of them. For the root systems associated with Lie algebras, these functions are also called Witten zeta-functions associated with Lie algebras which can be regarded as several variable generalizations of Witten zeta-functions defined by Zagier. In the case of type A r , we have already studied some analytic properties in our previous paper. In the present paper, we prove certain functional relations among these functions of types Ar (r = 1, 2, 3) which include what is called Witten's volume formulas. Moreover we mention some structural background of the theory of functional relations in terms of Weyl groups.