Abstract:In this paper, we introduce φ-1-absorbing prime ideals in commutative rings. Let R be a commutative ring with a nonzero identity 1 = 0 and φ : I(R) → I(R) ∪ {∅} be a function where I(R) is the set of all ideals of R. A proper ideal I of R is called a φ-1-absorbing prime ideal if for each nonunits x, y, z ∈ R with xyz ∈ I − φ(I), then either xy ∈ I or z ∈ I. In addition to give many properties and characterizations of φ-1-absorbing prime ideals, we also determine rings in which every proper ideal is φ-1-absorbi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.