Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In optical remote sensing images, the presence of clouds affects the completeness of the ground observation and further affects the accuracy and efficiency of remote sensing applications. Especially in quantitative analysis, the impact of cloud cover on the reliability of analysis results cannot be ignored. Therefore, high-precision cloud detection is an important step in the preprocessing of optical remote sensing images. In the past decade, with the continuous progress of artificial intelligence, algorithms based on deep learning have become one of the main methods for cloud detection. The rapid development of deep learning technology, especially the introduction of self-attention Transformer models, has greatly improved the accuracy of cloud detection tasks while achieving efficient processing of large-scale remote sensing images. This review provides a comprehensive overview of cloud detection algorithms based on deep learning from the perspective of semantic segmentation, and elaborates on the research progress, advantages, and limitations of different categories in this field. In addition, this paper introduces the publicly available datasets and accuracy evaluation indicators for cloud detection, compares the accuracy of mainstream deep learning models in cloud detection, and briefly summarizes the subsequent processing steps of cloud shadow detection and removal. Finally, this paper analyzes the current challenges faced by existing deep learning-based cloud detection algorithms and the future development direction of the field.
In optical remote sensing images, the presence of clouds affects the completeness of the ground observation and further affects the accuracy and efficiency of remote sensing applications. Especially in quantitative analysis, the impact of cloud cover on the reliability of analysis results cannot be ignored. Therefore, high-precision cloud detection is an important step in the preprocessing of optical remote sensing images. In the past decade, with the continuous progress of artificial intelligence, algorithms based on deep learning have become one of the main methods for cloud detection. The rapid development of deep learning technology, especially the introduction of self-attention Transformer models, has greatly improved the accuracy of cloud detection tasks while achieving efficient processing of large-scale remote sensing images. This review provides a comprehensive overview of cloud detection algorithms based on deep learning from the perspective of semantic segmentation, and elaborates on the research progress, advantages, and limitations of different categories in this field. In addition, this paper introduces the publicly available datasets and accuracy evaluation indicators for cloud detection, compares the accuracy of mainstream deep learning models in cloud detection, and briefly summarizes the subsequent processing steps of cloud shadow detection and removal. Finally, this paper analyzes the current challenges faced by existing deep learning-based cloud detection algorithms and the future development direction of the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.