Once and for All: Universal Transferable Adversarial Perturbation against Deep Hashing-Based Facial Image Retrieval
Long Tang,
Dengpan Ye,
Yunna Lv
et al.
Abstract:Deep Hashing (DH)-based image retrieval has been widely applied to face-matching systems due to its accuracy and efficiency. However, this convenience comes with an increased risk of privacy leakage. DH models inherit the vulnerability to adversarial attacks, which can be used to prevent the retrieval of private images. Existing adversarial attacks against DH typically target a single image or a specific class of images, lacking universal adversarial perturbation for the entire hash dataset. In this paper, we … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.