Supercritical circulating fluidized bed (CFB) is one of the prominent clean coal technologies owing to the advantages of high efficiency, fuel flexibility, and low cost of emission control. The fast and flexible load-tracking performance of the supercritical CFB boiler-turbine unit presents a promising prospect in facilitating the sustainability of the power systems. However, features such as large inertia, strong nonlinearity, and multivariable coupling make it a challenging task to harmonize the boiler’s slow dynamics with the turbine’s fast dynamics. To improve the operational flexibility of the supercritical CFB unit, a burning carbon based decentralized active disturbance rejection control is proposed. Since burning carbon in the furnace responds faster than throttle steam pressure when the fuel flow rate changes, it is utilized to compensate the dynamics of the corresponding loop. The parameters of the controllers are tuned by optimizing the weighted integrated absolute error index of each loop via genetic algorithm. Simulations of the proposed method on a 600 MW supercritical CFB unit verify the merits of load following and disturbance rejection in terms of less settling time and overshoot.