Acute kidney injury (AKI) is highly prevalent whether the patients undergo myeloablative or non-myeloablative hematopoietic cell transplantation (HCT); however, the pathogenesis and risk factors leading to AKI can differ between the two. The prognosis of AKI in patients receiving HCT is poor. In fact, AKI following HCT is associated not only with increased short-and long-term mortality, but also with progression to chronic kidney disease. Herein, the authors provide a comprehensive and up-to-date review of the definition and diagnosis, as well as of the incidence, pathogenesis and outcome of AKI in patients undergoing HCT, centering on the differences between myeloablative and non-myeloablative regimens.
INTRODUCTIONHematopoietic cell transplantation (HCT) is currently used to treat numerous malignant (for example, multiple myeloma, leukemias and lymphomas) and non-malignant hematological disorders (for example, aplastic anemia, b-thalassemia, immunodeficiency disorders and inborn errors of metabolism), as well as solid tumors (for example, breast cancer and neuroblastoma), which are in other instances incurable.The two major HCT procedures, taking into consideration the conditioning regimen used, are myeloablative autologous and allogeneic HCT and non-myeloablative allogeneic HCT. On the one hand, myeloablative HCT utilizes the maximally tolerated dose of TBI with or without chemotherapy, or with chemotherapy alone. On the other hand, non-myeloablative HCT depends more on donor cellular immune effects and less on the cytotoxic effects of the preparative regimen to control the underlying disease. 1,2 It ultimately uses a lower dose conditioning regimen and can thus be offered to older patients, to those debilitated by additional comorbidities, or to high-risk, heavily pretreated patients, who would not tolerate myeloablative HCT, resulting in a consequent decrease in regimen-related toxicity and treatment-related mortality. [3][4][5] Acute kidney injury (AKI) is highly prevalent whether the patients undergo myeloablative or non-myeloablative regimens; however, the pathogenesis and risk factors leading to AKI can differ between the two. In fact, AKI in patients receiving HCT is associated not only with increased short-and long-term mortality as compared with patients with no AKI, but also with a higher rate of progression to chronic kidney disease (CKD). Herein, the authors provide a comprehensive and up-to-date review of the definition and diagnosis of AKI as well as of the incidence, risk factors, pathogenesis and outcome of AKI in patients undergoing HCT, centering on the differences between myeloablative and nonmyeloablative regimens.