Background
Transcription factor FOXM1 is a potential target for anti-cancer drug development. An interfering peptide M1-21, targeting FOXM1 and FOXM1-interacting proteins, is developed and its anti-cancer efficacy is evaluated.
Methods
FOXM1 C-terminus-binding peptides are screened by in silico protocols from the peptide library of FOXM1 (1-138aa) and confirmed by cellular experiments. The selected peptide is synthesized into its D-retro-inverso (DRI) form by fusing a TAT cell-penetrating sequence. Anti-cancer activities are evaluated in vitro and in vivo with tumor-grafted nude mice, spontaneous breast cancer mice, and wild-type metastasis-tracing mice. Anti-cancer mechanisms are analyzed. Distribution and safety profiles in mice are evaluated.
Results
With improved stability and cell inhibitory activity compared to the parent peptide, M1-21 binds to multiple regions of FOXM1 and interferes with protein-protein interactions between FOXM1 and its various known partner proteins, including PLK1, LIN9 and B-MYB of the MuvB complex, and β-catenin. Consequently, M1-21 inhibits FOXM1-related transcriptional activities and FOXM1-mediated nuclear importation of β-catenin and β-catenin transcriptional activities. M1-21 inhibits multiple types of cancer (20 µM in vitro or 30 mg/kg in vivo) by preventing proliferation, migration, and WNT signaling. Distribution and safety profiles of M1-21 are favorable (broad distribution and > 15 h stability in mice) and the tested non-severely toxic dose reaches 200 mg/kg in mice. M1-21 also has low hemolytic toxicity and immunogenicity in mice.
Conclusions
M1-21 is a promising interfering peptide targeting FOXM1 for the development of anti-cancer drugs.