The t(8:21)(q22;q22) translocation is 1 of the most common chromosomal abnormalities linked to acute myeloid leukemia (AML). AML1-ETO, the product of this translocation, fuses the N-terminal portion of the RUNX transcription factor AML1 (also known as RUNX1), including its DNA-binding domain, to the almost entire transcriptional corepressor ETO (also known as MTG8 or RUNX1T1). This fusion protein acts primarily by interfering with endogenous AML1 function during myeloid differentiation, although relatively few genes are known that participate with AML1-ETO during leukemia progression. Here, we assessed the consequences of expressing this chimera in Drosophila blood cells. Reminiscent of what is observed in AML, AML1-ETO specifically inhibited the differentiation of the blood cell lineage whose development depends on the RUNX factor Lozenge (LZ) and induced increased numbers of LZ ؉ progenitors. Using an in vivo RNAi-based screen for suppressors of AML1-ETO, we identified calpainB as required for AML1-ETO-induced blood cell disorders in Drosophila. Remarkably, calpain inhibition triggered AML1-ETO degradation and impaired the clonogenic potential of the human t(8;21) leukemic blood cell line Kasumi-1. Therefore Drosophila provides a promising genetically tractable model to investigate the conserved basis of leukemogenesis and to open avenues in AML therapy.acute myeloid leukemia ͉ genetic model ͉ runx A cute myeloid leukemia (AML) is characterized by the clonal growth of immature blood cells and is often associated with non-random chromosomal translocations that impair the function of key hematopoietic regulators (1). For instance, the t(8:21)(q22;q22) translocation, which is present in 10 to 15% of all cases of AML, affects the transcription factor AML1 (2). AML1 is required at multiple steps of hematopoiesis from the emergence of definitive hematopoietic stem cells to the differentiation of myeloid and lymphoid lineages (3). AML1 is a member of the RUNX family of transcription factors that are characterized by a highly conserved DNA binding domain. AML1-ETO, the product of the t(8;21) translocation, contains AML1 N-terminal portion, including its DNA binding domain, fused to the almost entire transcriptional corepressor ETO (4, 5). While it was proposed initially that AML1-ETO promotes leukemia at least in part by repressing AML1 target gene expression (6), the molecular mechanism of action of AML1-ETO is likely to be more complex since it can both repress or promote transcription depending on the target genes and the cellular context (7).To gain insights into the function and mode of action of AML1-ETO, several animal models for t(8;21) leukemia have been developed using bone marrow transplantation, knock-in or transgenic techniques (8). These models supported the hypothesis that AML1-ETO dominantly suppresses the function of the endogenous AML1 protein in vivo (9-11). In addition, these works indicate that AML1-ETO inhibits myeloid differentiation and promotes self-renewal of hematopoietic progenitors (12-16)...