Abstract:Blood glucose (BG) monitoring is an important issue for critically ill patients. Previous studies reported that poor sugar control was associated with increased mortality in admitted patients. However, repeated blood glucose monitoring can be resource-consuming and cause a healthcare burden in clinical practice. In this study, we aimed to develop a personalized machine-learning model to predict dysglycemia based on electrocardiogram (ECG) findings. The study included patients with more than 20 ECG records duri… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.