We confront a practical cutting stock problem from a production plant of plastic rolls. The problem is a variant of the well-known one dimensional cutting stock, with particular constraints and optimization criteria defined by the experts of the company. We start by giving a problem formulation in which optimization criteria have been considered in linear hierarchy according to expert preferences, and then propose a heuristic solution based on a GRASP algorithm. The generation phase of this algorithm solves a simplified version which is rather similar to the conventional one dimensional cutting stock. To do that, we propose a Sequential Heuristic Randomized Procedure (SHRP). Then in the repairing phase, the solution of the simplified problem is transformed into a solution to the real problem. For experimental study we have chosen a set of problem instances of com-mon use to compare SHRP with another recent approach. Also, we show by means of examples, how our approach works over instances taken from the real production process.