“…x)f η,i (x)2 d q x = 0, i = 1, 2.Then ∞ 0 f 2 η,1 (x) + f 2 η,2 (x) d q x = ∞ -∞ F 2 η,1 (λ) + F 2 η,2 (λ) dρ(λ),whereF η,i (λ) = ∞ 0 f η,i (x)Y i (x, λ) d q x. Since for i = 1, 2, ∞ 0 f η 1 ,i (x)f η 2 ,i (x) 2 d q x → 0 as η 1 , η 2 → ∞, we get ∞ -∞ F η 1 ,i (λ) -F η 2 ,i (λ) 2 dρ(λ) = ∞ 0 f η 1 ,i (x)f η 2 ,i (x) 2 d q x → 0, i = 1, 2,as η 1 , η 2 → ∞.…”