One-dimensional metal-organic coordination polymers make up a class of compounds with potential towards the development of practical, new magnetic materials. Herein, a rare example of an ABBABB coupled linear chain comprised of alternating dicopper(II) tetraacetate units bridged to copper(II) acetate monomer units via axial η 2 :η 1 :µ 2 coordinated acetate is reported. Examination of the structure, determined by small molecule X-ray crystallography, shows that each Cu(II) ion is in a d x 2y 2 magnetic ground state. Magnetic susceptibility and magnetization data were collected and, consistent with the structural interpretation, demonstrate that the Cu(II) dimer (paddlewheel) exhibits classic antiferromagnetic exchange, while the S = 1/2 Cu(II) monomer is uncompensated in the ground state (low temperature regime.) Data were therefore fitted to a modified Bleaney-Bowers model, and results were consistent with the only other reported chain in this class for which magnetic data are available.