In the present work we show that, in the linear regime, gravity theories with more than four derivatives can have remarkable regularity properties if compared to their fourth-order counterpart. To this end, we derive the expressions for the metric potentials associated to a pointlike mass in a general higher-order gravity model in the Newtonian limit. It is shown that any polynomial model with at least six derivatives in both spin-2 and spin-0 sectors has regular curvature invariants. We also discuss the dynamical problem of the collapse of a small mass, considered as a spherical superposition of nonspinning gyratons. Similarly to the static case, for models with more than four derivatives the Kretschmann invariant is regular during the collapse of a thick null shell. We also verify the existence of the mass gap for the formation of mini black holes even if complex and/or degenerate poles are allowed, generalizing previous considerations on the subject and covering the case of Lee-Wick gravity. These interesting regularity properties of sixth-and higher-derivative models at the linear level reinforce the question of whether there can be nonsingular black holes in the full nonlinear model. MSC: 53B50, 83D05, PACS: 04.20.-q, 04.50.Kd