Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objective. Postpneumonectomy patients may develop acute respiratory distress syndrome (ARDS). There is a paucity of data regarding the optimal management of mechanical ventilation for postpneumonectomy patients. Esophageal balloon pressure monitoring has been used in traditional ARDS patients to set positive end-expiratory pressure (PEEP) and minimize transpulmonary driving pressure ( Δ P L ), but its clinical use has not been previously described nor validated in postpneumonectomy patients. The primary objective of this report was to describe the potential clinical application of esophageal pressure monitoring to manage the postpneumonectomy patient with ARDS. Design. Case report. Setting. Surgical intensive care unit (ICU) of a university-affiliated teaching hospital. Patient. A 28-year-old patient was involved in a motor vehicle collision, with a right main bronchus injury, that required a right-sided pneumonectomy to stabilize his condition. In the perioperative phase, they subsequently developed ventilator-associated pneumonia, significant cumulative positive fluid balance, and ARDS. Interventions. Prone positioning and neuromuscular blockade were initiated. An esophageal balloon was inserted to direct ventilator management. Measurements and Main Results. V T was kept around 3.6 mL/kg PBW, Δ P L at ≤14 cm H2O, and plateau pressure at ≤30 cm H2O. Lung compliance was measured to be 37 mL/cm H2O. PEEP was optimized to maintain end-inspiratory transpulmonary pressure P L < 15 cm H2O, and end-expiratory P L between 0 and 5 cm H2O. The maximal Δ P L was measured to be 11 cm H2O during the care of this patient. The patient improved with esophageal balloon-directed ventilator management and was eventually liberated from mechanical ventilation. Conclusions. The optimal targets for V T remain unknown in the postpneumonectomy patient. However, postpneumonectomy patients with ARDS may potentially benefit from very low V T and optimization of PEEP. We demonstrate the application of esophageal balloon pressure monitoring that clinicians could potentially use to limit injurious ventilation and improve outcomes in postpneumonectomy patients with ARDS. However, esophageal balloon pressure monitoring has not been extensively validated in this patient population.
Objective. Postpneumonectomy patients may develop acute respiratory distress syndrome (ARDS). There is a paucity of data regarding the optimal management of mechanical ventilation for postpneumonectomy patients. Esophageal balloon pressure monitoring has been used in traditional ARDS patients to set positive end-expiratory pressure (PEEP) and minimize transpulmonary driving pressure ( Δ P L ), but its clinical use has not been previously described nor validated in postpneumonectomy patients. The primary objective of this report was to describe the potential clinical application of esophageal pressure monitoring to manage the postpneumonectomy patient with ARDS. Design. Case report. Setting. Surgical intensive care unit (ICU) of a university-affiliated teaching hospital. Patient. A 28-year-old patient was involved in a motor vehicle collision, with a right main bronchus injury, that required a right-sided pneumonectomy to stabilize his condition. In the perioperative phase, they subsequently developed ventilator-associated pneumonia, significant cumulative positive fluid balance, and ARDS. Interventions. Prone positioning and neuromuscular blockade were initiated. An esophageal balloon was inserted to direct ventilator management. Measurements and Main Results. V T was kept around 3.6 mL/kg PBW, Δ P L at ≤14 cm H2O, and plateau pressure at ≤30 cm H2O. Lung compliance was measured to be 37 mL/cm H2O. PEEP was optimized to maintain end-inspiratory transpulmonary pressure P L < 15 cm H2O, and end-expiratory P L between 0 and 5 cm H2O. The maximal Δ P L was measured to be 11 cm H2O during the care of this patient. The patient improved with esophageal balloon-directed ventilator management and was eventually liberated from mechanical ventilation. Conclusions. The optimal targets for V T remain unknown in the postpneumonectomy patient. However, postpneumonectomy patients with ARDS may potentially benefit from very low V T and optimization of PEEP. We demonstrate the application of esophageal balloon pressure monitoring that clinicians could potentially use to limit injurious ventilation and improve outcomes in postpneumonectomy patients with ARDS. However, esophageal balloon pressure monitoring has not been extensively validated in this patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.