Organometallic photoresists are being pursued as an alternative photoresist material to push the current extreme ultraviolet lithography (EUVL) to the next generation of high-NA EUVL. In order to improve the photoresist performance, an understanding of the photoresist's response to different process conditions is required. In this endeavor, a stochastic development model is implemented, integrated into full photoresist process steps, and applied for photoresist performance investigations. The model is applied to Inpria-YA photoresist, which works mainly by the process of aggregation. Previously published modeling approaches for metal-organic photoresists assume that the development characteristics of these materials depend only on the size of the created oxo-clusters. In contrast to that, we propose a modeling approach that provides a more detailed description of the interaction among the developer, ligands, and oxo-bonds. Further, the calibration procedures conducted to extract the model parameters to match experimental data are discussed. The model approximated the experimental data with CD RMSE and LWR RMSE of 0.60 and 0.40 nm, respectively. We also investigated the impact of photoresist parameters on the process metrics, line width roughness (LWR), critical dimension (CD), doseto-size (DtS), and exposure latitude (EL) with the calibrated model. The investigation shows that details of the interaction of photoresist and developer, especially, the so-called development critical value, have a significant impact on the LWR and DtS. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.