Tandem methods for the catalytic asymmetric preparation of enantioenriched β-hydroxy (E)-enamines and cyclopropylamines are presented. The diastereoselective hydrogenation of enantioenriched (E)-trisubstituted hydroxy enamines to generate 1,2-disubstituted 1,3-amino alcohols is also outlined. These methods are initiated by highly regioselective hydroboration of N-tosyl substituted ynamides with diethylborane to generate β-amino alkenyl boranes. In situ boron to zinc transmetalation generates β-amino alkenyl zinc reagents. These functionalized vinylzinc intermediates were subsequently added to aldehydes in the presence of catalyst derived from an enantioenriched amino alcohol (morpholino isoborneol, MIB). The catalyst promotes highly enantioselective C–C bond-formation to provide β-hydroxy enamines in good isolated yields (68–86%) with 54–98% enantioselectivity. The intermediate zinc β-alkoxy enamines can be subjected to a tandem cyclopropanation to afford amino cyclopropyl carbinols with three continuous stereocenters in a one-pot procedure with good yields (72–82%), enantioselectivities of 76–94% and diastereomeric ratios >20:1. Diastereoselective hydrogenation of isolated enantioenriched β-hydroxy enamines over Pd/C furnished syn-1,2-disubstituted-1,3-amino alcohols with high yields (82–90%) and moderate to excellent diastereoselectivities. These methods were used in an efficient preparation of the enantioenriched precursor to PRC200-SS derivatives, which are potent serotonin-norepinephrine-dopamine reuptake inhibitors.