5-hydroxymethylfurfural (HMF) is one of the most important renewable platform-chemicals, a very valuable precursor for the synthesis of bio-fuels and bio-products. In this work, the hydrogenation of HMF to two furan diols, 2,5-bis(hydroxymethyl)furan (BHMF) and 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF), both promising renewable monomers, was investigated. Three commercial catalysts, Ru/C, Pd/C and Pt/C, were tested in the hydrogenation of aqueous HMF solutions (2-3 wt%), using a metal loading of 1 wt% respect to HMF content. By appropriate tuning of the process conditions, either BHMF or BHMTHF were obtained in good yields, and Ru/ C resulted the best catalyst for this purpose, allowing us to obtain BHMF or BHMTHF yields up to 93.0 and 95.3 mol%, respectively. This catalyst was also tested for in the hydrogenation of a crude HMF-rich hydrolyzate, obtained by one-pot the dehydration of fructose. The influence of each component of this hydrolyzate on the hydrogenation efficiency was investigated, including unconverted fructose, rehydration acids and humins, in order to improve the yields towards each furan diol. Moreover, ICP-OES and TEM analysis showed that the catalyst was not subjected to important leaching and sintering phenomena, as further confirmed by catalyst recycling study.