The Paris carbonaceous chondrite represents the most pristine carbonaceous chondrite, providing a unique opportunity to investigate the composition of early solar system materials prior to the onset of significant aqueous alteration. A dual origin (namely from the inner and outer solar system) has been demonstrated for water in the Paris meteorite parent body (Piani et al.
2018
). Here, we aim to evaluate the contribution of outer solar system (cometary‐like) water ice to the inner solar system water ice using Xe isotopes. We report Ar, Kr, and high‐precision Xe isotopic measurements within bulk
CM
2.9 and
CM
2.7 fragments, as well as Ne, Ar, Kr, and Xe isotope compositions of the insoluble organic matter (
IOM
). Noble gas signatures are similar to chondritic phase Q with no evidence for a cometary‐like Xe component. Small excesses in the heavy Xe isotopes relative to phase Q within bulk samples are attributed to contributions from presolar materials.
CM
2.7 fragments have lower Ar/Xe relative to more pristine
CM
2.9 fragments, with no systematic difference in Xe contents. We conclude that Kr and Xe were little affected by aqueous alteration, in agreement with (1) minor degrees of alteration and (2) no significant differences in the chemical signature of organic matter in
CM
2.7 and
CM
2.9 areas (Vinogradoff et al.
2017
). Xenon contents in the
IOM
are larger than previously published data of Xe in chondritic
IOM
, in line with the Xe component in Paris being pristine and preserved from Xe loss during aqueous alteration/thermal metamorphism.