The objective of this study was to test whether nanoporous silica nanoparticles can be employed as fillers in dental composite materials to improve their mechanical properties. These nanoporous silica nanoparticles were synthesized using sol-gel methods, in part modified by silanization, and thoroughly characterized. The nanoporous nanoparticles were added to dental resins to form nanocomposites (resins impregnated with nanoparticles) and hybrid composites (containing in addition conventional microfillers). The incorporation of these nano porous nanoparticles in dental resins or composites was characterized by investigation of the complex viscosity and double bond conversion as well as by determination of flexural strength and Young's modulus. The dispersion of the nanofillers was examined by SEM and EDX imaging of fracture surfaces. Incorporation of small contents (1-3 wt%) of unmodified nanoporous particles leads to improved mechanical properties. However, the incorporation of larger contents results in particle agglomeration and declining mechanical properties. This effect is less pronounced when the surface of the particles is modified with methacrylate residues, resulting in a lower agglomeration tendency and a more homogeneous filler dispersion. Surface properties and, concomitantly, dispersibility of the nanoparticles have a strong influence on mechanical properties. But the incorporation of nanoporous instead of solid nanoparticles into dental composite materials is indeed a possibility to improve the mechanical behavior. However, modification of the surface is necessary and the key to achieving uniform dispersion and, thereby, improving mechanical properties.