Condensation of β-Oxoanilide 1 with active methylene derivatives 2a,b afforded the pyridine derivative 5, and with crotononitrile afforded the pyridine 8. Compounds 9 and 11a-c were obtained by reaction of 1 with malononitrile dimer and arylidinemalononitrile 10a-10c. In contrast, when compound 1 reacted with ethoxymethylen malononitrile afforded the pyridine derivative 13. On the other hand, treatment of 1 with anthranilic acid gave the quinoline derivative 14. Also, reactions of 1 with isothiocyanate derivatives afforded compounds 16-18. The reaction of 1 with chalcone derivative afforded the pyridine derivative 22. Treatment of compound 1 with thiourea produced pyrimidine derivative 23. Furthermore, compound 1 converted into pyrimidinethione 24a and pyrimidinone 24b on treatment with a mixture of aromatic aldehydes and thiourea or urea respectively. Reaction of 24a with hydrazonyl halide, thiosemicarbazide and arylidinecyanothioacetamide afforded compounds 26, 28 and 29. Compound 29 was treated with chloroacetonitrile to afford compound 30. Six compounds from the newly synthesized were screened for antibacterial and antifungal activity against bacteria Staphylococcus aureus, Bacillus cereus and Klebsiella pneumonia and fungi Aspergillus flavus and Aspergillus ochraceous, respectively. Some of the tested compounds showed significant antimicrobial activity. IR, 1 H NMR, mass spectral data, and elemental analysis elucidated the structures of all the newly synthesized compounds.