PurposeIn order to make full use of the generalized greyness of interval grey number, this paper analyzes the properties and its applications of generalized greyness.Design/methodology/approachFirstly, the static properties of generalized greyness in bounded background domain, infinite background domain and infinitesimal background domain are analyzed. Then, this paper gives the dynamic properties of generalized greyness in bounded background domain, infinite background domain and infinitesimal background domain and explains the dialectical principle contained in it. Finally, the generalized greyness is used to judge the effectiveness of interval grey number transformation.FindingsThe results show that the generalized greyness of interval grey number has relativity, normativity, unity, eternity and conservation. The static and dynamic properties of generalized greyness are the same in the infinite and infinitesimal background domain, while they are different in the bounded background domain. The generalized greyness can be used as an index to judge whether the grey number transformation is greyness or information preservation.Practical implicationsThe research shows that the generalized greyness can be used as an index to judge the validity of the grey number transformation and also can be applied in grey evaluation, grey decision-making and grey prediction and so on.Originality/valueThe paper succeeds in realizing the mathematical principle of “white is black”, the “greyness clock-slow effect” of the value domain of interval grey number and the generalized greyness conservation principle, which provides a theoretical basis for the rational use of generalized greyness of interval grey number.