Quantum key distribution, in principle, provides information-theoretic security based on the laws of quantum mechanics. Entanglement swapping offers a unique ability to create entanglement between qubits that have not previously interacted. Entanglement-swapping setup helps in building a side-channelfree Quantum key distribution. A receiver-device-independent quantum key distribution protocol based on this idea, QKeyShield, is proposed. It adopts the use of a biased operator choice, thus, increasing the rate of generated bits. Several measures have been integrated to protect the sent qubits. Furthermore, security analyses for a list of attacks allowed by quantum mechanics are provided showing that QKeyShield can securely and effectively allow Alice and Bob to agree on a secret key. QKeyShield has certain advantages over earlier protocols including the ability to achieve high usage efficiency and the potential of enabling conference quantum key distribution.