In this work, we introduce LiNi0.8Mn0.15Al0.05O2 (NMA), which is cobalt-free and has
a high
nickel content, and a conductive composite material to NMA by supporting
it with a three-dimensional (3D) graphene aerogel (GA). With an easy
freeze-drying approach, NMA nanoparticles are properly dispersed on
graphene sheets, and GA creates a strong and conductive framework,
significantly improving the structure and conductivity. The structure
of the pure NMA and NMA/graphene aerogel (NMA/GA) composite was investigated
by X-ray diffraction (XRD) and field emission scanning electron microscopy
(FE-SEM). XRD and FE-SEM analyses clearly indicated that ultrapure
NMA structures are homogeneously dispersed among the GAs. In addition,
the composite structure was examined using transmission electron microscopy
(TEM) to determine the dispersion mechanisms. The electrochemical
cycling performance of the pure NMA and NMA/GA composite was evaluated
by rate capacitance, cyclic voltammetry (CV), and electrochemical
impedance spectroscopy (EIS). The synthesized NMA/GA was able to provide
89.81% specific capacity retention after the 500th cycle at C/2. The
average charge/discharge rates of the obtained cathode show good electrochemical
results and exhibit capacities of 190.2,186.3, 185.2, 176.2, 161.2,142.6,
and 188.5 mAh g–1 at C/20, C/10, C/5, C, 3C, 5C,
and C/20, respectively. EIS data showed an improvement in the impedance
of the composite containing GA. According to the results of the electrochemical
tests, NMA nanoparticles formed a conductive network with its porous
structure thanks to GA, formed a protective layer on the surface,
prevented the side reactions between the cathode and the electrolyte,
decreased the impedance of the cathode, and increased the redox kinetics.
In addition, the changes in the structure were investigated in the
NMA/GA composite cathode by XRD, FE-SEM, and Raman analyses at the
end of the 50th, 250th, and 500th cycles. In summary, the NMA/GA cathode
is expected to play an important role in lithium-ion batteries (LIBs)
by taking advantage of its easy synthesis and excellent cycle stability.