(2016) Well-defined PDMAEA stars via Cu(0)-mediated reversible deactivation radical polymerisation. Macromolecules, 49 (23). pp. 8914-8924.
Permanent WRAP URL:http://wrap.warwick.ac.uk/83692
Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Publisher's statement:"This document is the Accepted Manuscript version of a Published Work that appeared in final form in Macromolecules. copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work http://pubs.acs.org/page/policy/articlesonrequest/index.html ."
A note on versions:The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP URL above for details on accessing the published version and note that access may require a subscription.
AbstractThe Cu(0)-mediated reversible deactivation radical polymerisation of N,N'-dimethylaminoethyl acrylate in DMSO and IPA at ambient temperature using Cu(0) wire is investigated. Tetra-functional and octa-functional initiators were utilised to facilitate the synthesis of well-defined PDMAEA star homo and block copolymers with a range of molecular weights (Mn ~ 5000-41000 g mol -1 ). Both solvents demonstrated to be excellent media for the controlled polymerisation of DMAEA yielding narrow molecular weight distributions (Ð ~ 1.1) when the reactions were ceased at ~ 40% conversion. Interestingly, at high conversions (typically > 55%) high and low molecular weight shoulders were evident by SEC when DMSO and IPA were used respectively, suggesting large extent of termination and/or side reactions at prolonged reaction times. Nevertheless, high end group fidelity could be maintained when immediate precipitation of the polymers (at lower conversion) was performed yielding low dispersed P(DMAEA-b-MA) star block copolymers (Ð < 1.19, Mn ~ 20000 g mol -1 ).Importantly, guidelines on how to prevent hydrolysis, termination and side reactions of PDMAEA as well as how to purify and store such materials are also provided and discussed.