2016
DOI: 10.1109/tsp.2015.2504345
|View full text |Cite
|
Sign up to set email alerts
|

Online Anomaly Detection Under Markov Statistics With Controllable Type-I Error

Abstract: We study anomaly detection for fast streaming temporal data with real time Type-I error, i.e., false alarm rate, controllability; and propose a computationally highly efficient online algorithm, which closely achieves a specified false alarm rate while maximizing the detection power. Regardless of whether the source is stationary or nonstationary, the proposed algorithm sequentially receives a time series and learns the nominal attributes-in the online setting-under possibly varying Markov statistics. Then, an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
27
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 38 publications
(28 citation statements)
references
References 45 publications
0
27
0
1
Order By: Relevance
“…We emphasize that there exist nonparametric algorithms for density estimation [11], the parametric approaches have recently gained more interest due to their faster convergence [12], [13]. However, the parametric approaches fail if the assumed model is not capable of modeling the true underlying distribution [10].…”
Section: A Preliminariesmentioning
confidence: 99%
“…We emphasize that there exist nonparametric algorithms for density estimation [11], the parametric approaches have recently gained more interest due to their faster convergence [12], [13]. However, the parametric approaches fail if the assumed model is not capable of modeling the true underlying distribution [10].…”
Section: A Preliminariesmentioning
confidence: 99%
“…x t is the data present at time t , the complete parameter set of a classical Markov model can be represented by, as shown in [18,22,29,32] :…”
Section: Classical Markov Modelsmentioning
confidence: 99%
“…In this paper, we concentrate on the anomaly detection based on Markov models. Ozkan and Kozat [22] propose an online anomaly detection under Markov statistics with controllable false alarm rate for fast streaming temporal data. This algorithm learns the nominal attributes under possibly varying Markov statistics.…”
Section: Introductionmentioning
confidence: 99%
“…Geleneksel yaklaşımları izlemek yerine [1], aykırılık tespiti için UKSB mimarisini kullanan uygun bir objektif fonksiyon tanımlanmış ve bu iyi tanımlanmış fonksiyon ile UKSB mimarisinin parametreleri optimize edilmiştir. Bu bildiride tanımlanan aykırılık tespit algoritması degişken uzunluktaki serileri işleyebilmekte ve zaman serisi verileri için yüksek performans saglayabilmektedir ki zaman serisi verilerinin işlenmesi literatürde oldukça üzerinde durulan bir konudur [6], [7]. Deneylerde, geleneksel metodlara göre [3], [4] yüksek performans artışı gözlenmiştir.…”
Section: Introductionunclassified