Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Commercial vehicles frequently experience lateral interferences, such as crosswinds or side slopes, during extreme maneuvers like emergency steering and high-speed driving due to their high centroid. These interferences reduce vehicle stability and increase the risk of rollover. Therefore, this study takes a bus as the carrier and designs an anti-rollover control strategy based on mixed-sensitivity and robust H∞ controller. Specifically, a 7-DOF vehicle dynamics model is introduced, and the factors influencing vehicle rollover are analyzed. Based on this, to minimize excessive intervention in the vehicle’s dynamic characteristics, the lateral velocity, roll angle, and roll rate are recorded at the vehicle’s rollover threshold as desired values. The lateral load transfer rate (LTR) is chosen as the evaluation index, and the required additional yaw moment is determined and distributed to the wheels for anti-rollover control. Furthermore, to verify the effectiveness of the proposed anti-rollover control strategy, a co-simulation platform based on MATLAB/Simulink and TruckSim is developed. Various dynamic lateral interferences (side winds with different changing trends and wind speeds) are introduced, and the fishhook and J-turn maneuvers are selected to analyze and compare the proposed control strategy with a fuzzy logic algorithm. The results indicate that the maximum LTR of the vehicle is reduced by 0.11. Additionally, the lateral acceleration and yaw rate in the steady state are reduced by more than 1.8 m/s² and 15°, respectively, enhancing the vehicle’s lateral stability.
Commercial vehicles frequently experience lateral interferences, such as crosswinds or side slopes, during extreme maneuvers like emergency steering and high-speed driving due to their high centroid. These interferences reduce vehicle stability and increase the risk of rollover. Therefore, this study takes a bus as the carrier and designs an anti-rollover control strategy based on mixed-sensitivity and robust H∞ controller. Specifically, a 7-DOF vehicle dynamics model is introduced, and the factors influencing vehicle rollover are analyzed. Based on this, to minimize excessive intervention in the vehicle’s dynamic characteristics, the lateral velocity, roll angle, and roll rate are recorded at the vehicle’s rollover threshold as desired values. The lateral load transfer rate (LTR) is chosen as the evaluation index, and the required additional yaw moment is determined and distributed to the wheels for anti-rollover control. Furthermore, to verify the effectiveness of the proposed anti-rollover control strategy, a co-simulation platform based on MATLAB/Simulink and TruckSim is developed. Various dynamic lateral interferences (side winds with different changing trends and wind speeds) are introduced, and the fishhook and J-turn maneuvers are selected to analyze and compare the proposed control strategy with a fuzzy logic algorithm. The results indicate that the maximum LTR of the vehicle is reduced by 0.11. Additionally, the lateral acceleration and yaw rate in the steady state are reduced by more than 1.8 m/s² and 15°, respectively, enhancing the vehicle’s lateral stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.