Proceedings of the Advances in Materials, Machinery, Electrical Engineering (AMMEE 2017) 2017
DOI: 10.2991/ammee-17.2017.62
|View full text |Cite
|
Sign up to set email alerts
|

Online Learning Classification for Video Monitor

Abstract: This paper presents an online unsupervised learning classification of pedestrians and vehicles for video Monitor. Different from traditional methods depending on offline training, our method adopts the online label strategy based on temporal and morphological features, which saves time and labor to a large extent. It extract the moving objects with their features from the original video. An online filtering procedure is adopted to label the moving objects according to certain threshold of speed and area featur… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?