Synthesis gas fermentation using acetogenic clostridia is a rapidly increasing research area. It offers the possibility to produce platform chemicals from sustainable C1 carbon sources. The Wood-Ljungdahl pathway (WLP), which allows acetogens to grow autotrophically, is also active during heterotrophic growth. It acts as an electron sink and allows for the utilization of a wide variety of soluble substrates and increases ATP yields during heterotrophic growth. While glycolysis leads to CO 2 evolution, WLP activity results in CO 2 fixation. Thus, a reduction of net CO 2 emissions during growth with sugars is an indicator of WLP activity. To study the effect of trace elements and ventilation rates on the interaction between glycolysis and the WLP, the model acetogen Clostridium ljungdahlii was cultivated in YTF medium, a complex medium generally employed for heterotrophic growth, with fructose as growth substrate. The recently reported anaRAMOS device was used for online measurement of metabolic activity, in form of CO 2 evolution. The addition of multiple trace elements (iron, cobalt, manganese, zinc, nickel, copper, selenium, and tungsten) was tested, to study the interaction between glycolysis and the Wood ljungdahl pathway. While the addition of iron(II) increased growth rates and ethanol production, added nickel(II) increased WLP activity and acetate formation, reducing net CO 2 production by 28%. Also, higher CO 2 availability through reduced volumetric gas flow resulted in 25% reduction of CO 2 evolution. These online metabolic data demonstrate that the anaRAMOS is a valuable tool in the investigation of metabolic responses i.e. to determine nutrient requirements that results in reduced CO 2 production. Thereby the media composition can be optimized depending on the specific goal.