Online Prediction and Correction of Static Voltage Stability Index Based on Extreme Gradient Boosting Algorithm
Huiling Qin,
Shuang Li,
Juncheng Zhang
et al.
Abstract:With the increasing integration of renewable energy sources into the power grid and the continuous expansion of grid infrastructure, real-time preventive control becomes crucial. This article proposes a real-time prediction and correction method based on the extreme gradient boosting (XGBoost) algorithm. The XGBoost algorithm is utilized to evaluate the real-time stability of grid static voltage, with the voltage stability L-index as the prediction target. A correction model is established with the objective o… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.