2021
DOI: 10.1142/s0219691321500417
|View full text |Cite
|
Sign up to set email alerts
|

Online regularized pairwise learning with non-i.i.d. observations

Abstract: In this paper, we consider the online regularized pairwise learning (ORPL) algorithm with least squares loss function for non-independently and identically distribution (non-i.i.d.) observations. We first establish new Bennett’s inequalities for [Formula: see text]-mixing sequence, geometrically [Formula: see text]-mixing sequence, [Formula: see text]-geometrically ergodic Markov chain and uniformly ergodic Markov chain. Then we establish the convergence rates for the last iterate of the ORPL algorithm with th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 18 publications
0
0
0
Order By: Relevance