The paper sheds light on the use of a self-learning GNG neural network for identification and exploration of the purchasing behaviour patterns. The test has been conducted on the data collected from consumers aged 60 years and over, with regard to three product purchases. The primary data used to explore the purchasing behaviour patterns was collected during a survey carried out among the elderly students at the Universities of Third Age in Slovenia, the Czech Republic and Poland, in the years 2017-2018. Finally, a total of six different types of purchasing patterns have been identified, namely the 'thoughtful decision', the 'sensitive to recommendation', the 'beneficiary, the 'short thoughtful decision', the 'habitual decision' and 'multiple' patterns. The most significant differences in the purchasing patterns of the three national samples have been identified with regard to the process of purchasing a smartphone, while the most repetitive patterns have been identified with regard to the purchasing of a new product. The results significantly support the GNG network's validity for identification of consumer behaviour patterns. The application of this method allowed quick and effective to identify and segment consumers groups as well as facilitated the mapping of the differences among these groups and to compare the consumption behaviour expressed by consumers on different markets. The identified consumer purchase patterns may play a basic role for marketers to understand consumer behaviour and then propose tailored strategies in international marketing.