Fast advancements in equipment, programming, and correspondence advances have permitted the rise of internet-associated tangible gadgets that give perception and information estimation from the physical world. It is assessed that the aggregate number of internet-associated gadgets being utilized will be in the vicinity of 25 and 50 billion. As the numbers develop and advances turn out to be more develop, the volume of information distributed will increment. Web-associated gadgets innovation, alluded to as internet of things (IoT), keeps on broadening the present internet by giving network and cooperation between the physical and digital universes. Notwithstanding expanded volume, the IoT produces big data described by speed as far as time and area reliance, with an assortment of numerous modalities and changing information quality. Keen handling and investigation of this big data is the way to creating shrewd IoT applications. This chapter evaluates the distinctive machine learning techniques that deal with the difficulties in IoT information.