We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.T he formation of higher-level organization from independently functioning elements has resulted in some of the most significant transitions in biological evolution (1). These include the transition from prokaryotes to eukaryotes and from uni-to multicellular organisms, as well as the formation of complex animal societies with sophisticated division of labor among individuals. In eusocial insects such as ants, distinct morphological castes specialize in either reproduction or labor (2). Currently, very little is known of the genetic basis of caste and reproductive division of labor in these societies, where individuals follow different developmental trajectories, much like distinct cell lines in an organism (3). The resulting phenotypes, queens and workers, can differ greatly in morphology, physiology, and behavior, as well as in order of magnitude differences in life span and reproductive potential (2). Ants, of all social insects, arguably exhibit the highest diversity in social complexity, such as queen number, mating frequency, and the degree of complexity of division of labor (2), and most social traits have independent origins within the ants, making them well suited to comparative genomic analyses.The sequencing of the honey bee (Apis mellifera) genome marked a milestone in sociogenomics (4, 5), facilitating research on the evolution and maintenance of sociality from its molecular building blocks. Since then, genomes of three closely related species of solitary parasitic hymenopterans, Nasonia spp., were published and similarities and differences were extensively discuss...