Artificial light at night (ALAN) has global impacts on animals, often negative, yet its effects in polar regions remains largely underexplored. These regions experience prolonged darkness during the polar night, while human activity and artificial lighting are rapidly increasing. In this study, we analyzed a decade of citizen science data on light‐sensitive seabird occurrences in Longyearbyen, a High‐Arctic port settlement, to examine the impact of environmental factors including ALAN during polar night. Our investigation incorporated remote sensing data on nighttime lights levels, sea ice presence, and air temperature measurements from local meteorological station. Our findings reveal that artificial light may potentially impact seabird diversity in this region, with overall diversity decreasing alongside light intensity. However, the relationship between artificial light and seabird diversity was not uniformly negative; individual species exhibited varied responses. We also detected a correlation between artificial light and air temperature, emphasizing the complexity of environmental interactions. Notably, the piscivorous Black Guillemot (Cepphus grylle), the dominant species in Longyearbyen during the polar night, showed increased contribution in the local seabird assemblage with higher light levels. In contrast, the zooplanktivorous Little Auk (Alle alle) exhibited reduced contribution with higher light intensity and increased presence with higher air temperatures. We hypothesize that these differing responses are closely tied to the distinct dietary habits, varying sensitivity to artificial light due to individual adaptations, and overall ecological flexibility of these species, underscoring the need for further research. This study, which uniquely combines citizen science with remote sensing data, represents the first effort to systematically assess the effects of artificial lighting on seabirds during the polar night. The findings underscore the potential importance of this issue for seabird conservation in polar regions.