Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In Experiment 1, post-natal day (P) 17 and 24 rats were trained to a criterion of 80% conditioned responses (CRs) using stimulation of the middle cerebellar peduncle (MCP) as a conditioned stimulus (CS). Stimulation CS-alone extinction training commenced 24 h later, followed by reacquisition training after the fourth extinction session. Contrary to expected results, rats trained starting on P17 showed significantly fewer CRs to stimulation CS-alone presentations relative to P24s, including fewer CRs as early as the first block of extinction session 1. Furthermore, the P17 group was slower to reacquire following extinction. Experiment 2 was run to determine the extent to which the low CR percentage observed in P17s early in extinction reflected rapid forgetting versus rapid extinction. Twenty-four hours after reaching criterion, subjects were trained in a session split into 50 stimulation CS-unconditioned stimulus paired trials followed immediately by 50 stimulation CS-alone trials. With this "immediate" extinction protocol, CR percentages during the first block of stimulation CSalone presentations were equivalent to terminal acquisition levels at both ages but extinction was more rapid in the P17 group. These findings indicate that forgetting is observed in P17 relative to P24 rats 24 h following acquisition. The forgetting in P17 rats has important implications for the neurobiological mechanisms of memory in the developing cerebellum.