Sulphate (SO(4)(2-)) plays an essential role during growth, development, and cellular metabolism. Recently, we have isolated the human renal Na(+)-SO(4)(2-) cotransporter (hNaSi-1) that is implicated in the regulation of serum SO(4)(2-) levels. To gain an insight into hNaSi-1 regulation, our aims were to clone and characterize functionally the hNaSi-1 gene ( NAS1) promoter. We PCR-amplified 3742 bp of the NAS1 5'-flanking region, which is 64% AT-rich and contains numerous putative cis-acting elements. The NAS1 transcription start site was mapped to 25 bp upstream from the translation start site. NAS1 promoter truncations fused to luciferase gene constructs transfected into renal LLC-PK1, MDCK and OK cells allowed us to establish that the first 169 bp of the NAS1 promoter are sufficient for basal transcription. Furthermore, the NAS1 promoter conferred responsiveness to the polycyclic aromatic hydrocarbon 3-methylcholanthrene (3-MC), but not to thyroid hormone (T(3)) or vitamin D [1,25-(OH)(2)D(3)]. Site-directed mutagenesis of the NAS1 promoter identified a functional xenobiotic response element at -2,052, which conferred 3-MC responsiveness. The human NAS1 gene promoter is not responsive to Vitamin D or T(3), unlike the mouse Nas1 promoter with which it shares approximately 40% sequence similarity, but is transactivated by 3-MC, suggesting that the control of renal SO(4)(2-) reabsorption via the regulation of NAS1 transcription may be important for maintaining the sulphation potential for kidney polycyclic aromatic hydrocarbon metabolism.