“…Feature selection aims at reducing the number of variables to keep only the most relevant without changing the initial variables (Gomathi and Karlekar, 2019;Mendez et al, 2019). On the contrary, Feature extraction change the initial variables using the prior knowledge of the ontology for get relevant features (Kumar et al, 2020;Radovanovic et al, 2019;Evert et al, 2019;Agarwal et al, 2015;Radinsky et al, 2012;Greenbaum et al, 2019;Liu et al, 2021;Rinaldi et al, 2021;Castillo et al, 2008;Yilmaz, 2017;Hsieh et al, 2013;Rajput and Haider, 2011;Manuja and Garg, 2015;Ahani et al, 2021;Akila et al, 2021;Deepak et al, 2022;Messaoudi et al, 2021;Nayak et al, 2021;Pérez-Pérez et al, 2021;Zhao et al, 2021;. In semantic embedding, always in training data step, raw data are both refined by semantic knowledge and transformed into vectors to be exploited by neural networks (Chen et al, 2021;Ren et al, 2020;Qiu et al, 2019;Ali et al, 2019;Zhang et al, 2019;Makni and Hendler, 2019;Benarab et al, 2019;Moussallem et al, 2019;Gaur et al, 2019;Jang et al, 2018;Hassanzadeh et al, 2020;Ali et al, 2021;Amador-Domínguez et al, 2021;Alexandridis et al, 2021;Niu et al, 2022), SVM…”