In multidisciplinary engineering (MDE) projects, for example, automation systems or manufacturing systems, stakeholders from various disciplines, for example, electrics, mechanics and software, have to collaborate. In industry practice, engineers apply individual and highly specialized tools with strong limitation regarding defect detection in early engineering phases. Experts typically execute reviews with limited tool support which make engineering projects defective and risky. Semantic Web Technologies (SWTs) can help to bridge the gap between heterogeneous sources as foundation for efficient and effective defect detection. Main questions focus on (a) how to bridge gaps between loosely coupled tools and incompatible data models and (b) how SWTs can help to support efficient and effective defect detection in context of engineering process improvement. This chapter describes success-critical requirements for defect detection in MDE and shows how SWTs can provide the foundation for early and efficient defect detection with an adapted review approach. The proposed defect detection framework (DDF) suggests different levels of SWT contributions as a roadmap for engineering process improvement. Two selected industry-related real-life cases show different levels of SWT involvement. Although SWTs have been successfully applied in real-life use cases, SWT applications can be risky if applied without good understanding of success factors and limitations.